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bstract

Artificial Neural Networks (ANN) have been used for a wide variety of chemical applications because of their ability to learn system features.
his paper presents the use of feedforward neural networks for dynamic modeling and temperature control of a continuous yeast fermentation
ioreactor. The analytical model of this nonlinear process is also presented and it was used to generate the training data. Different ANNs were trained
sing the backpropagation learning algorithm. To avoid over-fitting of the data and achieve the best prediction ability with the simplest structure
ossible, a pruning algorithm is proposed for topology optimization of the ANN. The resulting ANNs were introduced in a Model Predictive Control
cheme to test the control performance of the structure. The robustness of this control structure was studied in the case of setpoint changes and
oisy temperature measurement, when the network used for prediction had been trained including noisy data in the training set. Results obtained

ith Linear Model Predictive Control (LMPC) as well as with proportional-integral-derivative (PID) control are also presented and compared with

hose obtained with the neural network model based predictive control (NNMPC) strategy. The use of inverse neural models for dynamic modeling
nd control of this process is also discussed and exemplified via simulations.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Model Predictive Control (MPC) is one of the most
idespread advanced process control strategies in the chemical

ndustries [1]. The main idea of the MPC algorithm is to solve an
ptimization problem to find the control vector trajectory, which
ptimizes some kind of performance objective over a future
rediction horizon. Predicted values of the controlled param-
ters are obtained from the process model. Most of the model
ased control algorithms are based on linear models, because
f the numerous techniques available for identification and con-
roller design and optimization. Linear Model Predictive Control
LMPC) is preferred for practical implementation also because
f the favorable computation time requirements. However, most
f the chemical processes are highly nonlinear, with widely vary-
ng operating conditions. In these situations LMPC technology

annot be applied readily. The drawbacks of the LMPC can be
voided using for prediction a nonlinear model of the process
nstead the linear one. In the Nonlinear Model Predictive Control
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model

NMPC) techniques predictions are usually obtained by integrat-
ng the analytical model of the process, described for example
y a set of differential equations. However, this approach has
wo main disadvantages compared to LMPC methods:

(a) It requires the elaboration of a complex, analytical model
of the process with good accuracy, which in the case of the
most chemical processes can be a very arduous task.

b) The optimization problem in the NMPC, that requires the
repeated solution of the analytical model, might require
great computational effort and time, which for large scale,
complicated processes can become prohibitively large.

These shortcomings can be avoided using Artificial Neural
etworks (ANNs) as the nonlinear model used in the control
ovement computation. The advantageous properties of neural

etworks, such as parallel computation, nonlinear mapping and
earning capabilities make them an alluring tool in many chem-

cal engineering problems. In the past 30 years there has been
growing interest in the field of artificial intelligence [2]. Neu-

al networks have been successfully used for a wide variety of
hemical engineering applications, such as detections and loca-
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Nomenclature

Aj the output of the jth layer of the network (j =
0, N)

AN the output of the neural network
AT heat transfer area (m2)
A1, A2 preexponential factors in Arhenius equation
C discrete state space matrix used in linear models
Cheat,ag heat capacity of cooling agent (J g−1 K−1)
Cheat, r heat capacity of mass of reaction (J g−1 K−1)
cj concentration of ion j (j = Na, Ca, Mg, Cl, CO3,

etc.)
cO2 oxygen concentration in the liquid phase (mg/l)
c∗

O2
equilibrium concentration of oxygen in the liquid
phase (mg/l)

c∗
O2,0

equilibrium concentration of oxygen in distilled
water (mg/l)

cp product (ethanol) concentration (g/l)
cS substrate (glucose) concentration (g/l)
cS, in glucose concentration in the feed flow (g/l)
cX biomass (yeast) concentration (g/l)
D output data from the training set
E sum squared error of the network
Ea1, Ea2 apparent activation energy for the growth, respec-

tively, denaturation reaction
Fag flow of cooling agent (l h−1)
Fe outlet flow from the reactor (l h−1)
Fi flow of substrate entering the reactor (l h−1)
Fj transfer function of the jth layer of the net (j =

0, N)
h number of learning epoch
H Gauss–Newton Hessian of the unregularized error

criterion in the OBS algorithm
H̃ Gauss–Newton Hessian of the regularized error

criterion in the OBS algorithm
Hi specific ionic constant of ion i (i = Na, Ca, Mg,

Cl, CO3, etc.)
I input data from the training set
Ii ionic strength of ion i (i = Na, Ca, Mg, Cl, CO3,

etc.)
Ij jth unit vector
k discrete time
(kla) product of mass-transfer coefficient for oxygen

and gas-phase specific area (h−1)
(kla)0 product of mass-transfer coefficient at 20 ◦C for

O2 and gas-phase specific area (h−1)
KO2 constant of oxygen consumption (g/l)
KP constant of growth inhibition by ethanol (g/l)
KP1 constant of fermentation inhibition by ethanol

(g/l)
KS constant in the substrate term for growth (g/l)
KS1 constant in the substrate term for ethanol produc-

tion (g/l)
KT heat transfer coefficient (J h−1 m−2 K−1)
lr learning rate

m momentum parameter used in the learning algo-
rithm (0.95)

mi quantity of inorganic salt i (i = NaCl, CaCO3,
MgCl2) (g)

Mi molecular/atomic mass of salt/ion i (g/mol)
n(i, j)(h) weighting factor from the ith input variable to the

jth output variable in the hth learning epoch
N number of layers in the neural network (input

layer is not counted)
P prediction horizon
Q number of sets of training input–output data
Qr regularization matrix
rO2 rate of oxygen consumption (mg l−1 h−1)
R universal gas constant (8.31 J mol−1 K−1)
RSP ratio of ethanol produced per glucose consumed

for fermentation
RSX ratio of cell produced per glucose consumed for

growth
Sj number of neurons in the jth layer (j = 0, N)
t time (h)
Tag temperature of cooling agent in the jacket (◦C)
Tin temperature of the substrate flow entering to the

reactor (◦C)
Tin,ag temperature of cooling agent entering to the jacket

(◦C)
Tr temperature in the reactor (◦C)
Tsp setpoint temperature (◦C)
U vector of the manipulated variables in linear mod-

els
V volume of the mass of reaction (l)
Vj volume of the jacket (l)
X state vector in linear models
Y output vector in linear models
YO2 yield factor for biomass on oxygen (mg/mg),

defined as the amount of oxygen consumed per
unit biomass produced

z ionic charge of ion i

Greek symbols
δw(i, j)(h) variation of the weighting factor in the hth

learning epoch
�Hr reaction heat of fermentation (kJ/mol O2 con-

sumed)
Φ, Γ discrete state space matrices used in linear models
λj Lagrange multipliers
μO2 maximum specific oxygen consumption rate

(h−1)
μP maximum specific fermentation rate (h−1)
μX maximum specific growth rate (h−1)
θ* vector with all weights and biases of the reduced

network
ρag density of cooling agent (g/l)
ρr density of the mass of reaction (g/l)
ξj saliency for weight j corresponding to the ANN

structure
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Backpropagation Learning algorithm (BPN) has been used most
frequently for dynamic modeling and process control appli-
cations. A typical feedforward neural network has one input
layer (usually with the identity transfer function; thus it only
Z.K. Nagy / Chemical Engine

ions of gross errors in process systems [3], fault detection in
ontrol systems [4] and optimal design of chemical processes
5]. ANNs were successfully used in many applications as non-
inear input–output maps for process data, in the identification
nd modeling of linear and nonlinear systems [6–8], and in
arious process control [9–11], and pattern recognition [12,13]
pplications. Besides the above-mentioned contributions, which
ainly focus on the applications of neural networks, there has

een a recent increase in the number of studies concerning the
ontrol-relevant properties of neural networks [14], as well as
he improvement of network training by using different network
tructures, transfer functions and learning algorithms [6,15–17].
he performance of the neural network model strongly depends
n its structure. Besides the aforementioned papers focusing on
he applications of ANNs or the training of ANNs, there has
een a recent increase in the number of studies concerning the
mprovement of network training and prediction by determining
he optimal network topology [18].

Chemical processes in general, and biochemical fermen-
ation systems in particular have strongly nonlinear features.
dditionally, biochemical process models have a large num-
er of parameters, which have to be determined experimentally
19,20]. Due to these features, on one hand the linear model
pproach is not appropriate for such processes, and on the other
and an accurate analytical model development can be very ardu-
us. Consequently, neural networks represent a helpful tool in
iochemical process modeling and control [21].

In this paper a detailed analytical model for a continuous fer-
entation reactor is presented first, which incorporates various

onlinear characteristics of the process, such as the oxygen mass
ransfer, detailed energy balance, complex reaction kinetics, the
emperature dependence of the kinetic parameters as well as the
ffect of ionic strength and temperature on the mass transfer
oefficient of oxygen. This is the first time when such a compre-
ensive yet control relevant model is derived for the fermentation
ioreactor, which can be used as a process simulator to analyze
r optimize the dynamic behavior of the system or for the design
nd evaluation of other control strategies.

The model is used in this work to simulate the real process
nd to generate the training data required for the neural network
ased empirical models. Neural networks with optimal structure
ere designed to model the dynamics of the process. It is well

ccepted that the prediction capability of the ANN based model
ighly depends on the number of neurons/connections used in
ts structure. Although an ANN with sufficiently large number
f connections can learn any input–output data dependency, if
he number of connections is too high the so called over-fitting
henomena occurs, characterized by a very low prediction qual-
ty. For the determination of the optimal network topology a
ovel pruning approach is proposed, which is based on a sys-
ematic optimal brain surgeon algorithm. The ANN model with
he optimal structure is used then in the MPC algorithm as the
nternal model for prediction of the control movements. The

erformances of the Neural Network Model based Predictive
ontrol (NNMPC) of the reactor temperature for the setpoint
hange were compared with those obtained with LMPC and
roportional-integral-derivative (PID) control. The robustness
Fig. 1. An individual processing element of a neural net.

f the NNMPC against noisy temperature measurement is also
valuated. Results using Inverse Neural Network Model based
redictive Control (INNMPC) of the process are also presented.
he paper provides the first comprehensive simulation study of

he application of an optimally designed neural network model
ased predictive control algorithm to a fermentation bioreactor.

. Artificial neural networks

A neural network is a computer program architecture for
onlinear computations, which is composed of many simple ele-
ents operating in parallel. These elements, called processing

lements, are inspired by biological nervous systems, and they
re highly interconnected. An individual processing element
neuron) can have any number of inputs, but only one output
hat is generally related to the inputs by a transfer function. The

ost frequently used transfer functions are: sigmoid function,
yperbolic tangent function, sine function, linear and saturated
inear transfer function. The argument of the transfer function is
he sum of the input elements of the corresponding neuron, each
nput being multiplied by the associated weight, which shows
he strength of the connection between two neurons. A neuron
sually has an additional input, called bias, which is much like
weight corresponding to a constant input of 1. Fig. 1 shows
schematic representation of an individual processing element

neuron).
The neurons are typically grouped into subsets, called lay-

rs, in which usually all the process units have the same bias
nd transfer function. Among the various architectures proposed
or neural networks, the multilayer, feedforward network with
Fig. 2. The structure of a generic feedforward neural network.
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istributes the inputs to the neurons from the next layer), one
utput layer and one or more hidden layers. The structure of a
eneral feedforward neural network is presented in Fig. 2.

The outputs of the neurons from a layer represents the inputs
or the next layer. The architecture of a network consists of a
escription of how many layers the network has, the number of

eurons in each layer, the transfer function used in each layer
nd how the layers are connected to each other.

The most frequently used learning algorithm to train feed-
orward networks is the backpropagation learning algorithm.
uring the training phase the connection weights and biases are
odified, using the backpropagation learning rules, so that the

etwork will learn the process features.
The backpropagation learning algorithms belong to the

lass of supervised training algorithms, i.e., there is a set of
nput–output data, which is repeatedly presented to the network
hen the weights are adjusted in order to minimize the error
etween the net output (AN) and the desired training output (D).
he more the number of sets of input–output data (Q), the bet-

er the network will learn the process. Hence, for a network the
raining data can be represented by the following matrices:

=

⎡
⎢⎢⎢⎣

P(1, 1) P(1, 2) · · · P(1, Q)

P(2, 1) P(2, 2) · · · P(2, Q)

:

P(S0, 1) P(S0, 2) · · · P(S0, Q)

⎤
⎥⎥⎥⎦ (1)

=

⎡
⎢⎢⎢⎣

D(1, 1) D(1, 2) · · · D(1, Q)

D(2, 1) D(2, 2) · · · D(2, Q)

:

D(SN, 1) D(SN, 2) · · · D(SN, Q)

⎤
⎥⎥⎥⎦ (2)

he backpropagation algorithm can be summarized as follows:

initialization of the weight coefficients with random values;
do
for (each training input–output pair)

the input array is presented to the network and the activation

Aj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fj

(
Sj−1∑
i=1

wj(1, i)Aj−1(i, 1) + Bj(1)

)

:

Fj

(
Sj−1∑
i=1

wj(Sj, i)Aj−1(i, 1) + Bj(Sj)

)

flux is propagated layer by layer through the net (forward
step);
an error criterion is calculated and it is propagated back
through the net adjusting the weights in order to minimize
the error criterion (backward step).

while (error is above the error goal).

b

c
i
e
a

Journal 127 (2007) 95–109

.1. Forward step

In this step the output of the net is calculated. For a feedfor-
ard network with N layers (the input layer is not counted), with

j neurons in the jth layer and with the same transfer function
Fj) in one layer the output of the jth layer can be computed with
he following matrix with recurrent terms:

· · Fj

(
Sj−1∑
i=1

wj(1, i)Aj−1(i, Q) + Bj(1)

)

: :

· · Fj

(
Sj−1∑
i=1

wj(Sj, i)Aj−1(i, Q) + Bj(Sj)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

ith F0 = � (identity function: �(x) = x) and A0 = P. For j = N the
utput of the network is obtained. The transfer function used in
ur work was the sigmoid function:

(x) = 1

1 + e−x
(4)

.2. Backward step

The most frequently used error criterion, calculated in this
tep is the sum squared error of the network, defined as:

=
SN∑
i=1

Q∑
j=1

(D(i, j) − AN (i, j))2 (5)

he adjustment of the network weights and biases is done by
ontinuously changing their values in the direction of steepest
escent with respect to error. There are several improved meth-
ds to perform this step more efficiently. One of these algorithms
s the backpropagation learning with momentum [22]. Momen-
um allows the network to ignore shallow local minimums in
he error surface. Momentum (m) can be added to backpropaga-
ion learning by making weight changes equal to the sum of a
raction of the last weight change and the new change suggested
y the backpropagation rule. This is expressed mathematically
elow:

(i, j)(h) = w(i, j)(h−1) + lr δw(i, j)(h) (6)

here

w(i, j)(h) = m δw(i, j)(h−1) + (1 − m)
∂E

∂w(i, j)
(7)

hese two steps (forward and backward) are repeated until the
um squared error (E) becomes less then the error goal.

. First principle model of the continuous fermentation
ioreactor

Alcoholic fermentation is one of the most important bio-

hemical processes. The attention directed to this process has
ncreased for the last two decades because its product, the
thanol, could represent an alternative energy source being used
s a partial substitute for gasoline as a fuel. There are numerous
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Fig. 3. The continuous fermentation reactor.

odels of this process based on different kinetic considera-
ions [23–25]. However, most of these models focus only on the
inetics of the process. The model presented below, used in sim-
lations, besides the detailed kinetic model, involves equations,
hich express the heat transfer, the dependence of kinetic param-

ters on temperature, the mass transfer of oxygen, as well as the
nfluence of temperature and ionic strength on the mass transfer
oefficient. The kinetic equations used in the presented bioreac-
or model are modifications of the Monod equations based on
he Michaelis–Menten kinetics, proposed by Aiba et al. [26]:

dcX

dt
= μXcX

cS

KS + cS

e−KPcP (8)

dcP

dt
= μPcX

cS

KS1 + cS

e−KP1cP (9)

dcS

dt
= − 1

RSX

dcX

dt
− 1

RSP

dcP

dt
(10)

here RSX and RSP are yield factors defined as the ratios of
ell and ethanol produced per the corresponding amount of glu-
ose used for growth or ethanol production, respectively. These
quations express the production or consumption of the main
omponents taking into account the inhibitory effect of ethanol.
he continuous fermentation reactor is shown schematically in
ig. 3.

The reactor is modeled as a continuous stirred tank with con-
tant substrate feed flow. There is also a constant outlet flow
rom the reactor that contains the product, substrate as well
s biomass. The reactor contains three distinct main compo-
ents: (i) the biomass, which is a suspension of yeast fed into
he system and evacuated continuously, (ii) the substrate, which
s solution of glucose, which feeds the micro-organism (Sac-
haromyces cerevisiae) and (iii) the product (ethanol), which is
vacuated together with the other components. In order to have
quasi steady-state regarding the biomass, a low dilution rate

Fe/V) is necessary, that is, the dilution rate must not exceed
he biomass production rate. Consequently, the process has a
ery slow dynamics. Together with the yeast, inorganic salts

re added. These are necessary compounds for the formation of
oenzymes. The inorganic salts due to the “salting-out” effect
ave also strong influence upon the equilibrium concentration
f oxygen in the liquid phase. This influence of the dissolved

I

I

I
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norganic salts as well as that of the temperature upon the equi-
ibrium concentration of oxygen in the liquid phase are modeled
n detail by Eqs. (11)–(29).

The mathematical model of the system is presented below:
The initial data of the system are:

inorganic salts in the reaction medium:

mNaCl = 500 g

mCaCO3 = 100 g

mMgCl2 = 100 g

the pH of the liquid phase:

pH = 6

the inputs of the system:

Fi = Fe = 51 l h−1

Tin = Fe = 25 ◦C

cS,in = 60 g/l

Tin,ag = 15 ◦C

Molar concentrations of ions in the reaction medium are cal-
ulated as follows, taking into account that the ion of Cl− is
resent in two salts (NaCl and MgCl2):

Na = mNaCl

MNaCl

MNa

V
(11)

Ca = mCaCO3

MCaCO3

MCa

V
(12)

Mg = mMgCl2

MMgCl2

MMg

V
(13)

Cl =
[

mNaCl

MNaCl
+ 2

mMgCl2

MMgCl2

]
MCl

V
(14)

CO3 = mCaCO3

MCaCO3

MCO3

V
(15)

H = 10−pH (16)

OH = 10−(14−pH) (17)

he ionic strength of the ion i is calculated using Eq. (18):

i = 1
2ciz

2
i (18)

2

Na = 0.5cNa(1) (19)

Ca = 0.5cCa(2)2 (20)

Mg = 0.5cMg(2)2 (21)
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Table 1
Parameters of the process model

A1 = 9.5 × 108 HCl = 0.844 RSP = 0.435
A2 = 2.55 × 1033 HCO3 = 0.485 RSX = 0.607
AT = 1 m2 HHO = 0.941 V = 1000 l
Cheat,ag = 4.18 J g−1 K−1 (kla)0 = 38 h−1 Vj = 50 l
Cheat,r = 4.18 J g−1 K−1 KO2 = 8.86 mg/l YO2 = 0.970 mg/mg
Ea1 = 55,000 J/mol KP = 0.139 g/l �Hr = 518 kJ/mol O2

Ea2 = 220,000 J/mol KP1 = 0.070 g/l μO2 = 0.5 h−1

HNa = −0.550 KS = 1.030 g/l μP = 1.790 h−1

HCa = −0.303 KS1 = 1.680 g/l ρag = 1000 g/l
HMg = −0.314 KT = 3.6 × 105 J h−1 m−2 K−1 ρr = 1080 g/l
HH = −0.774
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Cl = 0.5cCa(−1)2 (22)

CO3 = 0.5cCO3(−2)2 (23)

H = 0.5cH(1)2 (24)

OH = 0.5cOH(−1)2 (25)

The global effect of the ionic strengths is given by Eq. (26):

HiIi = HNaINa + HCaICa + HMgIMg + HClICl

+· · · + HCO3ICO3 + HHIH + HOHIOH (26)

The dependence of the equilibrium concentration of oxygen
ith temperature in distilled water is given by the below empir-

cal equation obtained from the experimental data presented by
evella [27]:

∗
O2,0 = 14.6 − 0.3943Tr + 0.007714T 2

r − 0.0000646T 3
r (27)

Due to the fact that salts are dissolved in the medium the
quilibrium concentration of oxygen in liquid phase is obtained
rom the following Setchenov type equation:

∗
O2

= c∗
O2,0 × 10−

∑
HiIi (28)

Mass transfer coefficient for oxygen as temperature function
s given by the following empirical equation [27]:

kla) = (kla)0(1.024)Tr−20 (29)

The rate of oxygen consumption is:

O2 = μO2

1

YO2

cX

cO2

KO2 + cO2

(30)

The expression of the maximum specific growth rate (Eq.
31)) involves the resultant of the growth rate that increases with
he temperature and the effect of the heat denaturation:

X = A1e−(Ea1/R(Tr+273)) − A2e−(Ea2/R(Tr+273)) (31)
The balance for the total volume of the reaction medium is:

dV

dt
= Fi − Fe (32)
The mass balances for the biomass, product, substrate and
issolved oxygen are expressed by Eqs. (33)–(36):

dcX

dt
= μXcX

cS

KS + cS

e−Kpcp − Fe

V
cX (33)

dcp

dt
= μPcX

cS

KS1 + cS

e−KP1cP − Fe

V
cP (34)

The first terms in Eqs. (33) and (34) represent the quantity
f biomass and product, respectively, produced in the fermenta-
ion reactions. The last terms describe the amount of yeast and
thanol, respectively, leaving the reactor.

dcS

dt
= − 1

RSX

μXcX

cS

KS + cS

e−KPcP − 1

RSP

μPcX

cS

KS1 + cS

× e−KP1cP + Fi

V
cS,in − Fe

V
cS (35)

The first and second terms in Eq. (35) represent the amount
f substrate consumed by the biomass for growth and ethanol
roduction, respectively. The third term is the quantity of glucose
ntering the reactor with the fresh substrate feed, while the last
erm is the quantity of glucose leaving the reactor.

The concentration of the dissolved oxygen in the reaction
edium is the resultant of the quantity of oxygen entering in the

eaction medium due to the mass transfer, expressed by the first
erm in Eq. (36), and the amount consumed in the fermentation
eactions (last term):

dcO2

dt
= (kla)(c∗

O2
− cO2 ) − rO2 (36)

The energy balances for the reactor and jacket are given by
qs. (37) and (38), respectively.

dTr

dt
= Fi

V
(Tin + 273) − Fe

V
(Tr + 273) + rO2�Hr

32ρrCheat,r

+KT AT (Tr − Tag)

Vρ C
(37)
r heat,r

dTag

dt
= Fag

Vj

(Tin,ag − Tag) + KT AT (Tr − Tag)

VjρagCheat,ag
(38)
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[

d

t

Fig. 4. Dynamic response of the system in the case of st

The parameters of the model are presented in Table 1

28].

The above-described model was used for the study of the
ynamic behavior of the bioreactor in the case of different dis-

i
fi
a

Fig. 5. Dynamic response of the system in the case of step c
ange in the input substrate concentration (40 → 60 g/l).

urbances. The disturbances considered were: step change in the

nlet flow temperature and in the substrate concentration. The
rst disturbance can occur due to the ambient temperature vari-
tion, while the second one because of quality changes of the

hange in the temperature of input flow (25 → 23 ◦C).
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ubstrate flow. The model was implemented as a MATLAB S-
unction and the simulator is available upon request from the
uthor.

The dynamic behavior of the system for the disturbances stud-
ed is shown in Figs. 4 and 5.

These figures show that variations in the input concentration
ave no significant effects on the ethanol concentration, there-
ore will not be considered as an important disturbance in this
tudy. According to Fig. 5 the effect of the change in the inlet
emperature is much more significant. A step of only 2 ◦C causes
n important variation of the ethanol concentration.

The presented model can be a useful tool to test various con-
rol methods. In this work two artificial neural network model
ased NMPC control techniques are presented andassessed in
omparison to PID and linear model based control.

. Linear model identification of bioreactor

In order to evaluate, how well the linear approximation
escribes the process, two linear models were identified based on
he simulated data obtained from the analytical model described
n the previous section:

1) Linear state space model, expressed by the equations below:

X(k + 1) = ΦX(k) + ΓU(k), Y (k) = CX(k) (39)

where Φ, Γ and C are discrete state space matrices for the
corresponding sampling time, X(k) the state vector, Y(k) the
output vector of the linear model and U(k) is the vector of the
manipulated variables at moment k. With this model the pro-
cess nonlinearity is demonstrated by the simulation results
presented in Fig. 6. The procedure of obtaining the plotted
data in Fig. 6 was the following: at the steady-state operat-
ing point (where Fag = 18 l h−1 and Tr ∼= 30 ◦C) a sequence

of step inputs (�Fag) was given. The changes in output
(�Tr) after one sampling period are plotted showing the
clear difference between the nonlinear model (represented
by circles) and the linearized one (solid line).

ig. 6. Process nonlinearity. The solid line indicates the temperature changes
or a linear approximation of the process.
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Fig. 7. OE linear model prediction.

2) Output-Error (OE) model, from the polynomial linear
model category was also identified using the simulated
input–output data pairs:

y(k) = −f1(y(k − 1) − e(k − 1)) − f2(y(k − 2)

−e(k − 2)) − · · · − fnf (y(k − nf ) − e(k − nf ))

+· · · + b1u(k − nk) + b2u(k − nk − 1)

+· · · + bnbu(k − nk − nb + 1) + e(k) (40)

where f1, f2, . . ., fnf, b1, b2, . . ., bnb, are the coefficients of the
model. The structure of the model is defined by giving the
time delay nk, and the order of the polynomials nf and nb,
respectively. In order to assure a sufficient complexity of the
model, a structure with parameters nk = 1, nf = nb = 4, was
identified. Fig. 7 shows that the obtained linear model is not
able to model accurately the process. Although the overall
dynamic characteristics are captured, and a proper feedback
model/plant correction can be used to minimize modeling
errors proper nonlinear model is needed for accurate control
as it will be shown in the following sections.

. Artificial Neural Network based dynamic model and
ontrol of the bioreactor

.1. Identification of the ANN model of the bioreactor

In this part of the work the primary goal was to obtain a
ynamic ANN model, which describes the variations of the reac-
or temperature (y) as a function of the cooling agent flow (u).
or this, a random input signal was generated and applied to

he system. The simulated response of the system together with
he random input signal was used to train the ANN. Once the
NN model is identified, it can be used as an internal model in
n advanced nonlinear model predictive control algorithm. For
his, it is crucial to have a network with very good generaliza-
ion properties. One way to obtain a network with appropriate
eneralization properties is to choose a structure with sufficient
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neural networks. This algorithm determines the optimal network
architecture by removing the superfluous weights from the net-
work in order to avoid the overfitting of the data by the ANN. A
variant of the OBS algorithm proposed by Hansen and Pedersen
Fig. 8. The initial structure of the ANN.

umber of parameters, which assure that the ANN learns the
raining data and then optimize the topology of the network until
he best generalization properties are achieved. A feedforward
eural network, with the same nk, nf and nb parameters as in the
ase of the linear OE model was chosen. Thus, in the input layer
he network has 8 neurones and 1 neurone in the output layer,
ith linear transfer function. One hidden layer with 14 neurones
ith the hyperbolic tangent sigmoid transfer function was used.
he fully connected initial network is presented in Fig. 8. Fig. 9
hows the input–output data sequence that was used for training
he network. Figs. 10 and 11 demonstrate that the network was
ble to learn the training data with a very good accuracy.

In order to test the ANN capability of generalization, other
andom input sequence was obtained by simulation, from the
rst principle model of the system. The test data set is presented

n Fig. 12. Figs. 13 and 14 demonstrate the very poor general-
zation performance of the ANN model. In this case very high
rediction errors were obtained. By comparing the plots for
raining and test set, it is quite obvious that the reason of the
oor generalization is the overfitting of the data. It is concluded
herefore that the model structure selected contains too many

eurons (weights). Consequently, for improving the generaliza-
ion performance of the ANN model, it is necessary to remove
he superfluous weights from the network.

Fig. 9. The training data.
Fig. 10. ANN prediction and prediction error for the training data.

.2. Determination of optimal topology of the ANN

One of the most important parameters of the ANN is the
umber of connections among the neurons. As it can be seen
n the simulation results presented in the previous section, this
arameter determines the learning and especially the general-
zation performances of the ANN. The so-called Optimal Brain
urgeon (OBS) is one of the most important strategy for pruning
Fig. 11. Histogram of prediction errors for the training data.
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Fig. 12. Data set to test the ANN model.

Fig. 13. ANN prediction and prediction error for the testing data.

Fig. 14. Histogram of prediction errors for the testing data.
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29] was developed and implemented with the modification to
ake into account that it should not be possible to have networks
here a hidden unit has lost all the weights leading to it, while

here still are weights connecting it to the output layer, or vice
ersa.

In this algorithm a saliency is defined as the estimated
ncrease of the unregularized error criterion, when a weight is
liminated. The saliency for weight j is defined by:

j = λjI
T
j H̃−1(θ∗)

1

N
Qrθ

∗ + 1

2
λ2

jI
T
j H̃−1(θ∗)H(θ∗)H̃−1(θ∗)Ij

(41)

here θ* is a vector with all the weights and biases of the reduced
etwork and Ij is the jth unit vector. The Gauss–Newton Hessian
f the regularized criterion is calculated with the equation:

˜ (θ∗) = H(θ∗) + 1

N
Qr (42)

here H is the Hessian of the unregularized error criterion, and
r is the regularization matrix. The Lagrange multipliers λj are

alculated from the following equation:

j = θ∗
j

H̃−1
j,j (θ∗)

(43)

he constrained minimum (the minimum when weight j is 0) is
hen found from:

θ = θ∗ − θ = −λjH̃
−1(θ∗)Ij (44)

n the beginning, the saliencies are calculated and the weights
re pruned as described above. However, when a situation occurs
here a unit has only one weight leading to or one weight lead-
ng from it, the saliency for removing the entire unit is calculated
nstead, by setting all weights connected to the unit to zero. With
he proposed enhanced OBS algorithm the computational time
ecessary to obtain the optimal topology was reduced in some

Fig. 15. Results of pruning the ANN with OBS.
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ally with 37 weights. The structure of this ANN is presented in
ig. 16. The architecture of the optimal ANN (with 53 weights) obtained by the
BS algorithm.

ases with 30%. The network can be retrained after each weight
limination or after a certain percent of the weights was elimi-
ated. The error criterion used by the algorithm is calculated for
he test data set. This algorithm was implemented in MATLAB
nd successfully applied to the above-obtained ANN models.

The fully connected feedforward ANN, used in our simula-
ions, contains a total number of 141 parameters (weights and
iases). The OBS algorithm was used in order to prune the net-
ork. After each weight elimination the network was retrained

or 50 iterations. Fig. 15 presents the results obtained by the
BS algorithm. In this figure the error criteria for both the train-

ng data and testing data together with the final prediction error
FPE) is presented. The FPE is estimated from the training set
nd is very useful when a test set is not available. The test error
s the most reliable estimate of the generalization error; there-
ore, the OBS algorithm selects the network with the smallest
est error. The OBS algorithm gave as the final network the one
ith 53 weights (a reduction with 88 weights, i.e., 62%). The
rchitecture of the selected network is presented in Fig. 16. A
onsiderable reduction of the network structure was achieved.
he number of the weights was reduced with 62%. Three of the

ig. 17. Generalization performances of the reduced ANN (with 53 weights).

F
i
t

ig. 18. Histogram of prediction errors for the testing data (ANN with 53
eights).

eurons from the hidden layer were completely eliminated. The
erformances on the testing data (Figs. 17 and 18), obtained with
he reduced ANN are significantly better than in the case of the
riginal structure.

Studying further the results obtained with the OBS algorithm,
resented in Fig. 15, one can observe that the network with the
econd best test error has a much simpler architecture (only 16
eights). The test error is very close to the value obtained with

he ANN with 53 weights, but the topology is reduced addition-
ig. 19. This network suffered a considerably simplification of
ts structure. A number of 125 weights were removed from the
otal number of 141 weights (a reduction of 88%). From the input

Fig. 19. The architecture of the ANN with 16 weights.
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ig. 20. Generalization performances of the reduced ANN (with 16 weights).

ayer 3, and from the hidden layer 7 neurons were eliminated
ompletely. This structure shows that for an accurate modeling
f the dynamic behavior of the system it is not necessary to use
he output measurements with 1 and 3 steps in the past and the
nput value with 3 sampling time in the past.

Despite the considerable reduction of the complexity of the
etwork structure this simple structure has very good general-
zation properties, as can be seen in Fig. 20. The simple structure
lso facilitates the fast data processing. Consequently, the pruned
etworks can be used in different nonlinear model predictive or
ptimal control algorithms as the internal model for prediction.

.3. ANN model based nonlinear predictive control of the
ioreactor

Once the ANN model is identified and the structure with the
est generalization properties is selected, it can be used in dif-
erent NMPC algorithms. In NMPC usually multi-step-ahead
rediction is needed to foresee the behavior of the process in
dvance in the future. An ANN model with one-step-ahead pre-
iction can be used repeatedly or another structure with more
hen one future output parameter in the output layer can be iden-
ified. The latter one has the advantage of faster computation
f the predicted values but in this case the prediction horizon
sually is fixed when the network structure is chosen and for
ifferent prediction horizons different networks with different
tructures have to be trained.

The network with the optimal topology (Fig. 16) was intro-
uced in a model predictive control scheme as the internal model
sed for prediction during the control movement calculation.

he neural network model based predictive control structure is
resented in Fig. 21.

In each sampling period the current temperature measure-
ent is obtained (Tr(k)), and considering that the past temper-

u
s
t
a

Fig. 21. Block diagram of NNMPC of the process.

ture measurements and control actions are known, the next
ontrol action is calculated by solving an optimization problem.
he next control action is selected such that the predicted out-
ome of the control action is optimum in the sense of minimizing
he square of the deviation from the setpoint trajectory over a
nite horizon (P). Prediction over the horizon P is achieved by
epeatedly applying the ANN model. Consequently, the opti-
ization problem for this particular case can be formulated as

ollows:

min
ag(k)

{
P∑

i=1

[Tr(k + i) − Tsp(k + i)]2

}
(45)

here:

r(k + i)|
i=1,P

= fNN (Fag(k), Fag(k − 1), Fag(k − 2), Tr(k),

× Tr(k − 1), Tr(k − 2)) (46)

ith this control structure, an excellent control of the process
as achieved. Here a control horizon P = 4 was used. For com-
arison the PID and LMPC control of the process are also
resented in Fig. 22. The superiority of NNMPC can be clearly
een.

The robustness of the NNMPC structure was studied in the
ase of noisy temperature measurement. The amplitude of the
hite noise considered in the simulation was 1.5 ◦C. To make

he network capable of controlling the process in the case of
oisy temperature measurement, the ANN model was trained
ncluding noisy data into the training set. If I and D are the
raining input and output, respectively, obtained from the ana-
ytical model of the process, the training set for training the net
ith noise can be constructed as follows:

input data : I∗ = [P P + noise] (47)

corresponding target data : D∗ = [D D]∗ (48)

nce the network had been trained with these training data it was

sed in the above-described NNMPC scheme. The scenario con-
idered in this study is the case when the measurement is subject
o high frequency noise (e.g., due to magnetic fields that would
ffect the temperature sensor, or variations in the hydrodynamics
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ig. 22. Simulation results with ANMPC, LMPC and PID control of the process.

n the reactor due to nonideal agitation). In this case a lowpass fil-

er could be used to obtain the non-noisy measurements required
or the training of the network. The results obtained in the case
f noisy temperature measurement are shown in Fig. 23. It can
e seen that a fairly good control was achieved. In this case, PID

Fig. 23. NNMPC of the process with noisy temperature measurement.
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Fig. 24. Block diagram of inverse-ANN based control of the process.

ontrol gave worse results than NNMPC and LMPC fails for all
lter designs tried.

As an alternative way to use neural networks for process
ontrol, the use of an inverse neural network model was also
onsidered. In the case of inverse neural network models, the
utputs of the network correspond to the future values of the
rocess inputs while the input layer of the net contains, besides
he past values of the process inputs and outputs, and the current
rocess output measurement, also the future values of controlled
ariables (process outputs). The inverse neural network due to its
tructure eliminates the optimization algorithm from the control
ovement computation. Using the past values of the controlled

nd manipulated variables as well as the current measurement,
he control movement can be directly obtained from the net when
he setpoint values are presented to the network as the future val-
es of the controlled variables. The block diagram of the inverse
eural network model based predictive control (INNMPC) of
he process is presented in Fig. 24.

The network used in these simulations had two hidden layers
with 7 and 5 neurons, respectively), 10 neurons in the input
ayer and 4 neurons in the output layer. The ANN model can be
epresented as follows:

Fag(k), Fag(k + 1), Fag(k + 2), Fag(k + 3)]

= finvNN (Tr(k + 3), Tr(k + 2) , Tr(k + 1), . . . ,

Tr(k), Tr(k − 1), Tr(k − 2), Tr(k − 3), Fag(k − 1),

Fag(k − 2), Fag(k − 3)) (49)

he network was trained using a historical database obtained
rom the analytical model. In the training phase the future values
f the temperature (Tr(k + i)) are known. After the network had
een trained, it was used for control, when in each sampling
ime, for the future temperature inputs of the network the setpoint
alues were used:

r(k + i)|
i=1,3 = Tsp(k + i)|

i=1,3 (50)

ig. 25 shows that a very good control performance was achieved

ith this control structure. Note that both control algorithms

re designed for setpoint tracking therefore the current formu-
ation would result in a bias in the controlled output in the case
f unmeasured disturbances. However, the bias can be easily



108 Z.K. Nagy / Chemical Engineering

e
t
c

6

c
c
a
p
e
e
t
o
b
t
p
t
o
t
d
a
T
T
T
e
p

t
o
t
o
l
d
m
c
c

t
i
n
p
b
p
m
o
m
a
t
a

R

[

[

[

[

[

[

[

[

Fig. 25. Inverse-NNMPC of the process.

liminated with a simple error feedback loop in the control archi-
ecture, that would provide the necessary integral action to the
ontroller.

. Conclusions

The paper successfully demonstrates the ability of artifi-
ial neural networks to model complex nonlinear biochemi-
al processes, such as the alcoholic fermentation. The detailed
nalytical model of the continuous fermentation bioreactor is
resented. This model is more complex than those used gen-
rally to test different control systems involving more nonlin-
ar characteristics of the process. Therefore it can be a useful
ool to test various nonlinear control methods. Using the data
btained from the analytical model, artificial neural network
ased models were also developed. An efficient new algorithm,
he enhanced Optimal Brain Surgeon, is also presented as a
runing algorithm for the determination of the optimal ANN
opology. With the OBS algorithm a reduction of the number
f weights from 141 to 53 (62%) in the first step, and finally
o 16 (88%) was achieved. Simulation results are presented to
emonstrate that this very simple network structure can achieve
better generalization than the initial, fully connected structure.
he pruned networks have very good generalization properties.
he simple structure also facilitates the fast data processing.
herefore, the pruned networks can be used in different nonlin-
ar model predictive algorithms as the internal model used for
rediction.

Two ANN model based control schemes are presented and
ested via simulations. The results were compared with those
btained with linear MPC and PID control. The superiority of
he NNMPC structure was demonstrated. The main advantage
f the NNMPC compared with the NMPC, which uses the ana-
ytical model of the system, is that the former does not need

etailed knowledge about the process, which is a feature that
ight be of crucial importance in the case of complex bio-

hemical processes. The nonlinear model used in the NNMPC
an be obtained from experimental input–output data without

[

[

Journal 127 (2007) 95–109

he modeling burden required by the derivation of the analyt-
cal model. The simulations presented also demonstrate how
eural networks can be trained and used for nonlinear model
redictive control of a process when measurements are affected
y noise. Additionally, the development and application of a
redictive control scheme based on the inverse neural network
odel of the process is also illustrated. The main advantage

f this control structure is that it needs a very simple mathe-
atical apparatus for the control movement calculation. This

lgorithm is no longer iterative thus the required computa-
ional time is very short, making it preferable for real-time
pplications.
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